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Purpose. One of the main objectives of the nonlinear mixed effects
modeling is to provide rational individualized dosing strategies by
explaining the interindividual variability using intrinsic and/or extrin-
sic factors (covariates). The aim of the current study was to evaluate,
using computer simulations and real data, methods for estimating the
exact significance level for including or excluding a covariate during
model building.
Methods. Original data were simulated using a simple one-
compartment pharmacokinetic model with (full model) or without
(null model) covariates (one or two). The covariate values in the
original data were resampled (using either permutations or paramet-
ric bootstrap methods) to generate data under the null hypothesis
that there is no covariate effect. The original and permuted data were
fitted to null and full models, using first-order and first-order condi-
tion estimation (with or without interaction) methods in NONMEM,
to compare the asymptotic and conditional p-value. Target log-
likelihood ratio cutoffs for assessing covariate effects were derived.
Results. The simulations showed that for sparse as well as dense data,
the first-order condition estimation methods yielded the best results
while the first-order method performs somewhat better for sparse
data. Depending on the modeling objective, the appropriate asymp-
totic p-value can be substituted for the conditional significance level.
Target log-likelihood ratio cutoffs should be determined separately
for each covariate when exact p-values are important.
Conclusions. Resampling methods can be employed to estimate the
exact significance level for including a covariate during nonlinear
mixed effects model building. Some reasonable inferences can be
drawn for potential application to design future population analyses.

KEY WORDS: mixed effects modeling; covariate selection; hypoth-
esis testing; resampling.

INTRODUCTION

One of the main objectives of drug development is indi-
vidualization of therapy. Nonlinear mixed effects modeling is

widely used to gain insights into pharmacokinetics (PK) and
pharmacodynamics (PD) of drugs, using the data typically
collected in clinical trials by the regulatory agencies (1) and
pharmaceutical companies (2). Towards that end, pharmaco-
metricians attempt to describe the interindividual variability
(IIV) of the fundamental PK and PD parameters using mean-
ingful covariates (e.g. relating systemic clearance and body
size). Mechanistic reasoning should be the primary criterion
for selecting important covariates, and statistical criteria
should only be used as supportive evidence. On the contrary,
most publications and regulatory submissions report model
building based purely on some statistical criteria. Log-
likelihood ratios (LLR), determined from the reduced (with-
out covariate) and full models (with covariate), are assumed
to follow a chi-square distribution. Thereby, the asymptotic
significance level at a specified (not necessarily prospective)
Type 1 error probability is calculated.

With the advent of powerful computers, computationally
intensive statistical methods are surfacing for use by pharma-
cometricians. Several resampling methods such as bootstrap
permutation, and jackknife techniques are being slowly incor-
porated into model building activities (3). Each of these meth-
ods serves different purpose(s). Bootstrap can be used to de-
termine the confidence regions of the point estimates of
model parameters. Permutation technique can be employed
to generate the distribution of a given test statistic under null
(H0) hypothesis (for example, H0: No covariate effect) (4).
Permutation tests are also known as randomization, reran-
domization, and exact tests.

The aims of the current project were to (1) investigate
the underlying distribution of LLR under null hypothesis and
its proximity to the expected chi-square distribution, and (2)
demonstrate the application of permutation techniques for
estimating exact significance levels for inclusion or exclusion
of covariates, for nested models.

METHODS

Simulated Data

Original Data

Data were simulated using a simple one-compartment
model with a typical systemic clearance (CLtyp) of 5 L/h and
a typical volume of distribution (Vtyp) of 50 L. The IIV of all
parameters were assumed to follow a log-normal distribution
with a 30% coefficient of variation (CV). The residual vari-
ability was assumed to follow a combined proportional (10%
CV) and additive error model (standard deviation of 0.1 mg/
L). Data were simulated without (NULLMODEL) covariate
effects.

Whereas mechanistic modeling is the most rationale
method of constructing models, for the sake of investigating
the statistical properties, we intentionally chose to make cer-
tain empirical simplifications. In the experiments that in-
cluded effects of body weight (on CL) and age (on V), the
following models were used:

CL = CLtyp + wtcl � �WT-70� (1)

V = Vtyp + agev � �AGE-50� (2)

Where wtcl (0.1 L/h/kg) and agev (0.1 L/y) are the slopes of
the linear relationships between the PK parameter and the
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covariate. The data were centered at a typical WT of 70 kg
and an AGE of 50 years. The WT and AGE were simulated
using a log-normal distribution with a mean of 70 kg and 50
years and IIV with a CV of 30%, respectively. Further, we
assumed a covariance between AGE and WT with a correla-
tion coefficient of 60%. The model that assumed only WT to
be an influential covariate will be referred to as WTMODEL
(Eq. [1]), the model that assumed only AGE to be influential
will be referred to as AGEMODEL (Eq. [2]) and the model
that assumed both WT and AGE to be influential will be
referred to as WTAGEMODEL (Eqs. [1 and 2]).

Data under dense (0.25, 2, 6, 12, 24 h) and sparse (0.25,
12 h) sampling designs were simulated with 30 subjects.
Mixed sampling design included 50% dense and 50% sparse
sampling. To explore the underlying LLR distribution, 1000
replications of original data (OD) were simulated using the
NULLMODEL.

Permuted Data

The LLR ratio is intended to measure how much better
the full model describes the data compared to the null model.
Large values of the LLR tell us that the full model describes
the data better. LLRs obtained using NONMEM are assumed
to follow a chi-square distribution (5). To determine how
large the observed value must be to convince us to use the full
model, we need to find out how the LLR is distributed when
the reduced model is, in fact, true. By permuting the covari-
ates, we can simulate a data set where the covariates are
guaranteed to be unrelated to the model parameters. By re-
peatedly doing this, we can estimate the distribution of the
LLR under the null model.

Rerandomized covariates can be obtained in of the fol-
lowing three ways: (1) by permuting the raw covariates (6),
(2) by permuting the residuals under the full model (7), and
(3) permuting the residuals under the reduced model ob-
tained by first correcting for the covariate(s) (8). We em-
ployed the first of these methods in our analyses because of its
ease of implementation whose details are provided below.

The covariates in OD were permuted (1000 times) to
simulate (PermData) data under the null hypothesis that wtcl
� 0. For instance, when the true model was WTMODEL,
under null hypothesis the WTs do not contribute significantly
to decreasing the IIV, and it does not matter whose WT is
what. Such Monte–Carlo simulations can be performed in a
parametric (bootstrap) or a nonparametric (permutations or
bootstrap) manner. Nonparametric permutations, which is re-
sampling without replacement, were achieved by randomly
swapping the covariate values among the subjects. Bootstrap,
which is resampling with replacement, could also be em-
ployed to simulate under null hypothesis. Parametric permu-
tations (better known as ‘parametric bootstrap’) were
achieved by randomly simulating the covariate using a para-
metric distribution. The number of permutation replications
was determined using the binomial theorem:

Nrep =
p � �1 − p�

SE2 (3)

Where p is the probability of an event of interest, SE is the
target standard error, and Nrep is the number of replications.
For example, if the alpha level of interest is 5% (p � 0.05)
and target SE is 0.007 (14% of p) then Nrep would be 1000.

Log-Likelihood Ratio (LLR) Distribution

The aim of these experiments was to explore the LLR
distribution obtained for each of the estimation methods. The
OD and PermData (Nrep � 1000) were fitted to
NULLMODEL and WTMODEL. The difference in the ob-
jective function value between the two models, i.e. the LLR,
was calculated. Kolmogorov-Smirnov (KS) nonparametric
statistical testing was used to either accept or reject the hy-
pothesis that the LLR followed a chi-square distribution. The
probabilities of the LLRs being within 3.84 (� 5%), 6.63 (�
1%), and 10.83 (� 0.1%) were also determined.

Estimation of Significance Level

The aim of these experiments was to conduct a thorough
comparison of the asymptotic and conditional (via permuta-
tions) p-values. To that end, 100 ODs were randomly simu-
lated using the NULLMODEL. True (NULLMODEL) and
alternate (WTMODEL) models were fitted to each of the
OD sets to determine the asymptotic p-value. It is prohibi-
tively cumbersome to permute 100 ODs for 1000 times, thus
we permuted 100 times instead. The asymptotic p-value was
determined assuming that the LLR followed a chi-square dis-
tribution with one degree of freedom. Further, parametric
permutations (Nrep � 100) of the WTs were performed and
the alternate model was fitted to the permuted data to deter-
mine the conditional p-value. The conditional p-value was
generated by counting the number of times the LLR of the
permuted data was greater than 3.84.

In a different set of experiments, we evaluated the ques-
tion of whether a particular target LLR cutoff can be univer-
sally used for all covariates or not, given a data set. Dense
data were simulated using WTAGEMODEL and fitted to
NULLMODEL, WTMODEL, AGEMODEL, and WTAGE-
MODEL. Permuting AGE among the patients without con-
sidering WT will produce considerable bias into the estima-
tion under the null hypothesis. For example, it might be un-
reasonable to allow a 100 kg patient to be one year old. The
functional relationship between WT and AGE was described
using a linear model and the residual error was permuted
among the subjects. The permuted residual error was added
to the AGE predicted by the so-developed linear model to
randomly generate AGE (PermData), given the (true) WT of
the subject. Target LLR cutoffs, at an alpha level of 5%, were
derived for WT (WTMODEL) and AGE (AGEMODEL)
separately as well as for AGE given WT (WTAGEMODEL)
already in the model, using nonparametric permutations. The
LLR from the 1000 permuations were ordered, and the value
at the 95th percentile is identified as the target LLR cutoff for
an alpha of 5%.

Real Data

The purpose of using real data was to demonstrate the
application of resampling techniques in selecting covariates.
Hence the identity of the drug per se is not relevant to achieve
this objective. The data are from a clinical trial in which an
oral antiepileptic drug was administered b.i.d., to about 100
patients with ages between 3 and 17 years and body weights
between 16 and 100 kg. About 50% of the patients received
another drug-drug interaction (DDI) concomitantly, which
potentially could interact with the pharmacokinetics of the
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drug of interest. The presence or absence of the concomitant
medication was indicated by 1 and 0 (zero) in the data set.
Plasma concentrations (about 3.5 samples/patient) were ob-
tained at steady state. The PK were described using a simple
one-compartment model with a first-order absorption. From
decades of experience, body size is known to be an important
predictor of CL and V, according to the allometric model:

CL = CLtyp � �WT�70�beta (4)

V = Vtyp � �WT�70� (5)

Where, CLtyp is the typical clearance in a 70 kg person, beta
is the exponent, and Vtyp is the typical volume of distribution
in a 70 kg person. The PK model with body weight as a
covariate was employed as the base model. The residual error
was described using a combined proportional and additive
error model. Subsequent analysis aimed at answering the
questions: (1) Is age an important predictor of clearance?, and
(2) Does the concomitant administration of DDI alter the
clearance of the drug of interest? The influence of age on CL
was tested using

CL � CLtyp � (WT/70)beta � [1 + agecl � (AGE-10)] (6)

The influence of DDI on CL was tested using

CL � CLtyp � (WT/70)beta � (1 + ddicl � DDI) (7)

In Eqs. (6) and (7), agecl is the slope of the age and CL
relationship and ddicl is the fraction by which CL changes in
the presence of DDI. To test if ddicl is significantly different
from zero, the ones and zeroes of DDI were randomly
swapped among the patients to simulate PermData. This en-
sures that the CL estimate is independent of the fact that the
patient received DDI or not. Taking the range of ages and
body weights into consideration, a priori we can expect that
WT and AGE are not mutually independent. Permuting
AGE among the patients without considering WT will pro-
duce considerable bias into the estimation under the null hy-
pothesis. The functional relationship between WT and AGE
was described using a linear model and the residual error was
permuted among the subjects. The permuted residual error
was added to the AGE predicted by the so-developed linear
model to randomly generate AGE (PermData), given the
(true) WT of the subject. The original (real) and PermData
(Nrep � 1000) were fitted to base model with or without the
covariate (equation 6 or 7). The difference in the objective
function value (OBJ) between the two models, i.e. the LLR,
was calculated. Quantile–Quantile (QQ) plots were used to
assess whether the data have a chi-square distribution with
one degree of freedom. If the distributions are the same, then
the plot will be approximately a straight line. Kolmogorov-
Smirnov (KS) nonparametric statistical testing was used to
either accept or reject the hypothesis that the LLR followed
a chi-square distribution. The 95th percentile of the observed
LLR distribution (using PermData) was determined.

All data were simulated and modeled using NONMEM
(ver. 5.0, level 1.1) with a Compaq Digital Fortran compiler
(ver. 6.01). The model parameters were estimated using first-
order (FO) and first-order conditional without (FOCE), or
with interaction between inter-individual and residual errors
(FOCE-INTER) estimation methods provided in NON-
MEM. Permutations and other data manipulations were per-

formed using SAS (Cary, North Carolina) (ver. 6.12) and
S-plus 2000.

RESULTS AND DISCUSSION

Simulated Data: LLR Distribution

Figure 1 shows the distribution of theoretical and ob-
served LLRs when the data are dense. By visual inspection,
the LLR distributions estimated using the FOCE and FOCE-
INTER methods are in good agreement with the theoretical
asymptotic distribution and with most values less than 8. The
LLR distribution estimated using the FO method seems to be
more “spread” out. For example, only 60% of the LLRs are
less than or equal to 2 for the FO method, as opposed to
about 80% for the FOCE methods. Fitting dense data using
the FO method, then, would lead to overestimation of the
significance level (or more false positives). Table I shows the
probabilities of observed LLRs for the 3 estimation methods.
Whereas the expected probability of LLRs to be greater than
or equal to 3.84 is 0.05 at an alpha of 5%, the observed prob-
ability was 0.17. The corresponding probabilities for the
FOCE and FOCE-INTER are 0.078 and 0.065, which are in
better agreement with 0.05. The trend is similar at all other
alpha levels tested. The KS test showed that the distribution
of LLRs derived using the FO method are significantly dif-
ferent (p-value ∼0) from the theoretical chi-square distribu-
tion with one degree of freedom. FOCE-INTER method
yielded LLRs not significantly different from an expected chi-
square distribution, based on the KS test.

When the data are sparse, the FO method results in prob-
abilities relatively closer to the expected values, although not
better than FOCE or FOCE-INTER. Although the LLR dis-
tribution was found to be very significantly different from the
chi-square distribution with one degree of freedom, from a
practical consideration, one can employ the FO method to
derive reasonable asymptotic p-values. The contribution of
the earlier part of the LLR probability distribution curve to-
ward the cumulative probability is much larger than that of
the later part. Hence, it is possible to find significant devia-
tions from the chi-square distribution, yet, have p-values rela-
tively close to the alpha level. The p-values for rejecting the
null hypothesis that the observed LLR distribution follow

Fig. 1. Theoretical and observed distributions of the log�likelihood
ratios. Simulations included 30 subjects and a dense sampling sched-
ule.
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chi-square distribution are large for FOCE and FOCE-
INTER estimation methods. Inferences for the case when the
data are partly dense and partly sparse are similar to those for
the dense data case. Hence, when conducting a meta-analysis
of data from many clinical trials (mixture of sparse and dense
data) the appropriate FOCE (depending on the residual error
model) is the preferred method.

Simulated Data: Estimation of Significance Level

Figure 2 shows the asymptotic and conditional p-values
derived using the FO, FOCE and FOCE-INTER methods for
dense data. The FO method offers poor asymptotic “esti-
mates” of the significance levels that deviate systematically
from the line of identity (Panel A). The asymptotic p-values
are under-predicted (i.e. more significant than they really are)

as evident from the convex shape of the scatter plot. For
example, an asymptotic p-value of 0.05 estimated using the
FO method corresponds truly to a conditional p-value of 0.18.
Based on the statistical significance, one could falsely con-
clude that the covariate WT significantly contributes to de-
scribing the interindividual error. Even when that data are
sparse, the FO method under-predicted the significance level,
but not as poorly as for the dense data. This is not the case
when the FOCE estimation methods are used for both dense
and sparse data (not shown). The significance levels distribute
evenly around the line of identity. Although FOCE with or
without interaction yielded very similar results, this should
not be interpreted as a general case. The FOCE-INTER
method was built to allow interaction between the two
sources of random variability (inter-individual and residual
errors).

Fig. 2. The asymptotic and conditional p-values derived by fitting the data simulated using the NULLMODEL to NULLMODEL and
WTMODEL. Panel A, B, and C show the results from using FO, FOCE, and FOCE-INTER estimation methods, respectively, when the
sampling was dense. Panel D shows the results when the FO method was used with sparse data. The solid line represents the line of identity.
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Further experiments to investigate the applicability of a
universal target LLR cutoff (for an � � 5%) showed that
target LLR cutoffs need to be derived separately for every
covariate. The target LLR cutoffs are shown in Table II.
Clearly, the target LLR cutoffs are different for different co-
variates and are also sensitive to the covariates already pre-
sent in the model. The target LLR for considering WT in the
model is 15.37 whereas that for the AGE is 9.72. Further, the
target LLR for considering AGE when WT is already present
in the model is 6.46. The target LLRs get closer for the FOCE
methods, especially for FOCE-INTER, but not identical. This
is expected from the fact that the closer the LLR distribution

resembles the chi-square distribution, the closer the target
LLR cutoff would be to the theoretically expected value. It
should be noted, however, that one would naturally use the
FO method due to practical constraints on the execution time,
if deriving exact p-value were critical.

Real Data: Estimation of Significance Level

The base model for analyzing the real data included body
weight as a covariate. Age was added to the base model to
describe clearance using Eq. (6). Permuting the ages condi-
tional upon the body weight of a given patient was performed
to derive the exact p-value for including age as a covariate.
For instance, it may be meaningless to randomly assign a WT
of 70 kg to a neonate. The relationship between body weight
and age of the patients was described using a linear function
to perform meaningful simulations. Figure 3 shows the QQ
plots when age was added as a covariate to the base model for
both FO and FOCE-INTER estimation methods. For the FO
estimation method, the QQ plot suggests that the LLR dis-
tribution deviates from the expected chi square distribution.
The QQ plot for the FOCE-INTER estimation method dem-
onstrates that the LLR distribution is reasonably similar to
the expected chi-square distribution. However, the KS test
indicated that the observed LLR distribution is significantly
different from a chi-square distribution with one degree of
freedom for both of the estimation methods (� � 5%). Table
III shows the asymptotic and conditional p-values for both
estimation methods. The LLR cutoff value for the FO method
was found to be 6.99 as against the expected 3.84 (� � 5%).
The LLR cutoff value for the FOCE-INTER method (4.67)
was more reasonable than that of the FO method. The FO
method, although much greater than 0.05, overestimated the
significance level of age (0.2490 vs. 0.3980). These results sug-
gest that one could employ the FO method to determine the
significance of including age by first estimating the target
LLR cutoff via permutations. However, one can circumvent
the grueling task of permuting and fitting several hundreds of
replications by using the FOCE-INTER method that offers
more reliable asymptotic p-values (0.4511 vs. 0.5180). Results
from the simulated data, as shown in Fig. 2 (Panel A), also

Fig. 3. QQ plots to assess the influence of FO (hollow circles) and
FOCE-INTER (filled circles) estimation method deriving asymptotic
and conditional p-values when AGE was included in the model. The
solid line represents the line of identity.

Table I. Probabilities of Observed Log-Likelihood Ratios at 5%,
1%, and 0.1% Alpha Levels

Probability FO FOCE FOCE-INTER

Dense data
�5% 0.170 0.078 0.065
�1% 0.077 0.019 0.014
�0.1% 0.020 0.004 0.002
p-value 0 0.0017 0.241

Sparse data
�5% 0.079 0.054 0.057
�1% 0.025 0.014 0.014
�0.1% 0.004 0.002 0.002
p-value 0 0.305 0.122

Mixed data
�5% 0.132 0.073 0.064
�1% 0.045 0.02 0.013
�0.1% 0.012 0.004 0.002
p-value 0 0.204 0.155

Note: The probability of the LLR to be less than 3.84 (based on a
chi-square distribution with 1 degree of freedom at a 5% alpha level)
is about 0.17, when the expected expected value is 0.05. The p-value
from the KS test for rejecting the null hypothesis that the observed
distribution is not significantly different from a chi-square distribu-
tion, with one degree of freedom, is also provided).

Table II. Simulation Data: The Asymptotic and Conditional p-
Values Estimated Using FO, FOCE, and FOCE-INTER Methods

Covariate
LLR
cutoff

Asymptotic
p-value

Conditional
p-value

FO
WT 15.37 0.000 0.000
AGE 9.72 0.964 0.986
AGE|WT 6.46 0.020 0.069

FOCE
WT 5.59 0.000 0.000
AGE 5.28 0.000 0.001
AGE/WT 5.67 0.199 0.284

FOCE-INTER
WT 3.94 0.000 0.000
AGE 3.85 0.343 0.360
AGE|WT 4.29 0.316 0.331

Note: The log-likelihood ratio cut-off values derived based on the
95th percentile are also shown for an � � 5%, for WTMODEL
(WT), AGEMODEL (AGE), and WTAGEMODEL (AGE|WT).
The exepected cutoff value according to the chi-square distribution is
3.84 for an � � 5% and for one degree of freedom.
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demonstrate that the asymptotic p-value determined using
the FO method is “anticonservative.” Nevertheless, both es-
timation methods suggested that age is not an important de-
terminant of clearance.

Permuting the DDIs was performed to derive the exact
p-value for including DDI as a covariate. QQ plots when DDI
was added as a covariate to the base model, for both FO and
FOCE-INTER estimation methods, were similar to those
shown in Fig. 3. For the FO estimation method, the QQ plots
suggested that the LLR distribution deviates from the ex-
pected chi-square distribution. The QQ plot for the FOCE-
INTER estimation method demonstrated that the LLR dis-
tribution is reasonably similar to the expected chi-square dis-
tribution. However, the KS test indicated that the observed
LLR distribution is significantly different from a chi-square
distribution with one degree of freedom for the both of the
estimation methods (alpha � 5%). Table III shows the
asymptotic and conditional p-values for both estimation
methods. The LLR cutoff value for the FO method was found
to be 6.48 as against the expected 3.84 (� � 5%). The LLR
cutoff value for the FOCE-INTER method (3.70) was more
reasonable than that of the FO method. As mentioned earlier,
one could utilize permutations to establish the target LLR
cutoff using the FO method. But a more pragmatic solution
would be the use of FOCE-INTER to estimate the asymptotic
p-value that is reasonably close to the conditional p-value.
Nevertheless, both methods suggested that DDI is an impor-
tant determinant of clearance. We employed nonparametric
permutations to determine the exact p-values. It is also pos-
sible to employ parametric bootstrap techniques as an alter-
native. No assumption about the functional form of the dis-
tribution is required when using nonparametric permutations.
Further, if nonparametric permutations are performed, it is
relatively easier to deal with time-varying covariates.

Recently, Wählby et al. reported the use of permutations
to screen covariates using a wide variety of models (9). The
results presented in the current article, by and large, are in
agreement with Wählby et al. findings. In their work, the
authors simulated a random binary variable (dummy covari-
ate) to derive the target LLR cutoff value for a given dataset
that was suggested to be valid for all covadates. Our results
and theoretical expectations seem to suggest differently. Evi-
dently, the cutoff values for age and DDI are different, par-

ticularly for the FO method. The simulated data illustrate this
point even more clearly. Even Wählby et al. (9) obtained
different actual significance levels corresponding to an alpha
of 5% and 1% for different covariate characteristics. These
authors concluded that one target LLR cutoff fits all covari-
ates. For example, Wählby et al. reported that the actual sig-
nificance level at an alpha of 1% was 7.89 and 10.66, for the
cases where a binary covariate (0 or 1) was simulated with a
ratio of 10:90% and 2:98%. These conditional cutoff values
are clearly different. Banken (10) reported a similar trend
when the binary covariate ratio was varied from 5% to 50%.
The underlying distributions of these covariates are different
and hence one should expect different cutoff values. Further,
when handling covariates like serum creatinine, body weight,
age, and gender, we strongly feel their correlation needs to be
taken into consideration to derive reliable significance levels.

Monte-Carlo simulations, such as permutations, offer a
good means of estimating the exact p-value during nonlinear
mixed effects model building. However, the disadvantage is
that of the run time. It is well appreciated that model building
is highly time demanding even for moderately big datasets
(which are most common). Under conditions utilized to gen-
erate the results in Table II, the FO method required 7 h and
the FOCE methods required about 35 h on an 800 MHz Pen-
tium computer with 128 MB RAM (Compaq). It is important
to note that the dataset and the model are fairly simple in our
case. If the FO method requires 1 h for each run and there are
10 models to be evaluated with a p-value precision of about
15% (Nrep � 1000), then the total modeling time would be
10,000 h.

CONCLUSIONS

Monte–Carlo simulations, such as permutations, offer a
good means of estimating the exact p-value during nonlinear
mixed effects model building. However, the disadvantage is
that of an increase in time, which is not trivial. It is impractical
to estimate model parameters of simulated data over several
hundreds of replications using the FO or FOCE method on a
day-to-day basis. Identification of covariates needs some level
of mechanistic understanding and a priori expectation. When
such understanding is available deriving the exact p-value
may not be required and hence tedious simulations via per-
mutations may not be necessary. However, an appropriate
estimation method has to be selected for a given data set (see
below). Developers should incorporate methods, such as the
one described in the present report, for qualifying a model in
the software packages for wider and ready availability. When
the exact p-value is required, for example to establish the
effectiveness of a new molecular entity, permutations may be
necessary.

Our results suggest the following:

1. When at least some subjects have dense sampling, the
FO method offers a poorer estimate of the significance level.
The FOCE-INTER method should be used. Again, if exact
p-value is required then permutations and estimation using
the FO method is recommended.

2. Even when the data are sparse the FOCE methods
perform the best. However, the asymptotic p-values derived
using the FO method are more reasonable for the sparse data
than those for the dense data. The LLR distribution in both

Table III. Real Data: The Asymptotic and Conditional p-Values Es-
timated Using FO and FOCE-INTER Methods

Covariate
Estimation

method AsymPa CondPb Cut-off

Age FO 0.249 0.398 6.99
Age FOCE-INTER 0.451 0.518 4.67
DIDI FO 0.000 0.005 6.48
DDI FOCE-INTER 0.007 0.010 3.70

aThe AsymP (asymptotic p-value) was determined assuming that the
LLR followed a chi-square distribution with one degree of freedom.

bThe CondP (conditional p-value) was generated by counting the
number of times the LLR of the permuted data was greater than
3.84.

Note: The log-likelihood ratio cut-off values derived based on the
95th percentile are also shown for an � � 5%. The expected cut-off
value according to the chi-square distribution is 3.84 for an � � 5%
and for one degree of freedom.
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cases is significantly different from the chi-square distribu-
tion. If an exact p-value is required, then permutations and
estimation using the FO method is recommended.

3. The LLR cutoff value should be determined sepa-
rately for each covariate. One cutoff value does not apply for
all covariates, especially with the FO method. The FOCE
methods provide reasonably close target cutoff values for all
covariates. The correlation between the covariates already in
the model and the covariates under testing should be taken
into account.

4. In general, good mechanistic reasoning would effi-
ciently avoid the practical limitations of the extremely time
demanding task of simulation and estimation to determine
exact p-values.

Modeling is more of an art rather than a fully developed
science. Whereas certain components of the model building
process cannot be formalized, some stages could be. One of
the most important components would be that of model quali-
fication (11). The analysts and others in the drug develop-
ment team (including regulators) need to ascertain them-
selves that the proposed model(s) are qualified to achieve the
purpose for which they are built. False positive significance
levels may unnecessarily increase the cost of drug develop-
ment and complicate the drug labeling. At the same time, not
being able to recognize important covariates might lead to
suboptimal use of a drug. The current and previous reports
offer useful guidelines in using permutation tests to select
covariates during model development. We would like to en-
courage researchers to devote efforts to construct good mod-
eling practices, which we believe would enhance the credibil-
ity of the applications of modeling and simulation in contem-
porary drug development. Future research should focus on
obtaining exact p-values for non-nested models, evaluating

various resampling techniques to handle time-varying covari-
ates, and how to deal with run failures estimation of permuted
samples.
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